Moses Turkle Bility, PhD

Assistant Professor, Infectious Diseases and Microbiology


2136 Public Health, 130 DeSoto Street, Pittsburgh, PA 15261
R-znvy: zgovyvgl@cvgg.rqh
Primary Phone: 967-193-3503
Secondary Phone: 369-026-7661
Fax: 967-838-3471

Personal Statement

Infectious diseases, including viral (i.e. chronic hepatitis viruses, HIV) and bacterial (i.e. Staphylococcus aureus) diseases are a major source of morbidity and mortality; development of therapeutics against these diseases has been hindered by the lack of robust small animal models that accurately recapitulate human disease; in most cases rodents are not susceptible to infections or are resistant to disease. The lack of robust small animal models of human infectious diseases also poses a major hindrance in studying emerging diseases (i.e. Methicillin-resistant Staphylococcus aureus, Zika virus).


Macrophages play a critical role in modulating human immune response against human infectious agents, macronutrients (i.e. iron, lipids, etc) sensing and metabolism, surveillance of the microbiome, and tissue integrity/ remodeling; therefore, elucidating the role of macrophage activation in human infectious diseases and microbiome dysbiosis-associated inflammatory diseases will provide novel insight into the mechanisms of immune dysregulation and tissue pathogenesis. 


The Bility lab is interested in elucidating the role of macrophages in human infectious diseases and microbiome dysbiosis-associated inflammatory diseases utilizing humanized rodent models carrying human immune system and other autologous human organ systems. Major research efforts are: I) Developing humanized rodent models for studying the mechanisms of human diseases; II) Elucidating the role of macrophage polarization in chronic liver infections (HBV, HCV), HIV-hepatitis virus co-infections and associated liver diseases; III) Elucidating the nexus between macrophage polarization and microbiome dysbiosis in human inflammatory diseases (i.e. nonalcoholic steatohepatitis, skin neoplasia); IV) Elucidating the role of myeloid cells in HIV infection, immune response, immunity, and pathogenesis. 


2000 - 2004 | The Pennsylvania State University | Bachelor of Science
2004 - 2008 | The Pennsylvania State University | Doctor of Philosophy
2009 - 2012 | University of North Carolina at Chapel Hill | Postdoctoral Fellow 


IDM 2014, Functional Genomics 

IDM 2023, Microbiology Laboratory

IDM 3440 Vaccine and Immunity

MSMVM 3435: Tumor Virology 

IDM 3440 Vaccine and Immunity

IDM 2001 Molecular Biology of Microbial Pathogens

Selected Publications

Agarwal Y, Beatty C, Ho S, Thurlow L, Das A, Kelly S, Castronova I, Salunke R, Biradar S, Yeshi T, Richardson A, and Bility MT (2020). Development of humanized mouse and rat models with full-thickness human skin and autologous immune cells. Scientific Reports.


Agarwal Y, Beatty C, Biradar S, Castronova I, Ho S, Melody K, and Bility MT (2020). Moving Beyond the Mousetrap: Current and Emerging Humanized Mouse and Rat Models for Investigating Prevention and Cure Strategies Against HIV Infection and Associated Pathologies. Retrovirology.


Akkina R, Barber DL, Bility MT, Bissig KD, Burwitz BJ, Eichelberg K, Endsley JJ, Garcia JV, Hafner R, Karakousis PC, Korba BE, Koshy R, Lambros C, Menne S, Nuermberger EL, Ploss A, Podell BK, Poluektova LY, Sanders-Beer BE, Subbian S, Wahl A (2020). Small Animal Models for Human Immunodeficiency Virus (HIV), Hepatitis B, and Tuberculosis: Proceedings of an NIAID Workshop. Curr HIV Res.


Melody K, Roy C, Kline C, Cottrell M, Evans D, Shutt K, Pennings P, Keele B, Bility MT, Kashuba A, and Ambrose Z (2020). Long-acting rilpivirine (RPV LA) pre-exposure prophylaxis does not inhibit vaginal transmission of RPV-resistant HIV-1 nor select for high frequency drug resistance in humanized mice. Journal of Virology.


Peters JM, Kim DJ, Bility MT, Borland MG, Zhu B, Gonzalez FJ (2019). Regulatory mechanisms mediated by peroxisome proliferator-activated receptor-β/δ in skin cancer. Molecular Carcinogenesis.


Human immunodeficiency virus infection induces lymphoid fibrosis in the BM-liver-thymus-spleen humanized mouse model. Samal J, Kelly S, Na-Shatal A, Elhakiem A, Das A, Ding M, Sanyal A, Gupta P, Melody K, Roland B, Ahmed W, Zakir A, and Bility MT. JCI Insight. 2018.

Bility MT, Nio K, Li F, McGivern DR, Lemon SM, Feeney ER, Chung RT, Su L (2016). Chronic hepatitis C infection-induced liver fibrogenesis is associated with M2 macrophage activation. Sci Rep. 2016 Dec 21;6:39520.

Cheng L, Li F, Bility MT, Murphy CM, Su L (2015).  Modeling hepatitis B virus infection, immunopathology and therapy in mice. Antiviral Res.  6:39520.

Bility MT, Curtis A, Su L (2014).  A chimeric mouse model to study immunopathogenesis of HCV infection. Methods Mol Biol.  1213:379-388.

Bility MT, Cheng L, Zhang L, Luan Y, Li F, Chi L, Tu Z, Zhang L, Fu Y, Niu J, Fusheng W, and Su L (2014).  Hepatitis B virus infection and immunopathogenesis in a humanized mouse model: induction of human specific liver fibrosis and M2-like macrophages. Plos Pathogens.

Bility MT and Sripa B (2014).  Chronic Opisthorchis viverrini infection and associated  hepatobiliary disease is associated with iron loaded – M2 macrophages. Korean Journal of Parasitology.   52:695-699.

Bility MT, Li F, Cheng L and Su L (2013).  Liver immune-pathogenesis and therapy of human liver tropic virus infection in humanized mouse models. J Gastroenterol Hepatol.  Suppl.  1:120-124.

Bility MT, Zhang L, Washburn ML, Curtis A, Kovalev GI and Su L (2012). Generation of humanized mouse with both immune system and human liver cells: a model for hepatitis C virus infection and    immunopathogenesis. Nature Protocols.  7:1608-1617.

Washburn ML, Bility MT, Kovalev GI, Zhang L, Buntzman A, Frelinger JA, Barry W, Ploss A, Rice CM, and Su L (2011).   A Humanized Mouse Model to Study Hepatitis C Virus Infection, Immune Response, and Liver Disease. Gastroenterology 140(4):1334-1344.

Borland MG, Krishnan P, Lee C, Albrecht PP, Shan W, Bility MT, Marcus CB, Lin JM, Amin S, Gonzalez FJ, Perdew GH, Peters JM (2014).  Modulation of aryl hydrocarbon receptor (AHR)-dependent signaling by peroxisome proliferator-activated receptor β/δ (PPARβ/δ) in keratinocytes. Carcinogenesis.  35:1602-1612.

Zhu B, Ferry CH, Blazanin N, Bility MT, Khozoie C, Kang BH, Glick AB, Gonzalez FJ, Peters JM (2014).   PPARβ/δ promotes HRAS-induced senescence and tumor suppression by potentiating p-ERK and repressing p-AKT signaling. Oncogene.33:5348-5359.

Bility MT, Zhu B, Gonzalez FJ, Peters JM (2010).  Ligand activation of peroxisome proliferator activated receptor-β/δ (PPARβ/δ) and inhibition of cyclooxygenase 2 (COX2) enhances inhibition of skin tumorigenesis. Toxicological Sciences 113:27-36.

Bility MT, Devlin MK, Blazanin N, Glick AB, Billin AN, Willson TM, Ward JM, Gonzalez FJ, Peters JM (2008).  Ligand activation of peroxisome proliferator-activated receptor-b/d (PPARb/d) inhibits skin carcinogenesis. Carcinogenesis 29:2406-2414.

Shan W, Nicol CJ, Ito S, Bility MT, Kennett MJ, Ward JM, Gonzalez FJ, Peters JM (2008).  Peroxisome proliferator-activated receptor-beta/delta protects against chemically induced liver toxicity in mice. Hepatology. 47:225-235.

Burdick AD, Bility MT, Girroir EE, Billin AN, Willson TM, Gonzalez FJ, Peters JM (2007).  Ligand activation of peroxisome proliferator-activated receptor-beta/delta (PPARbeta/delta) inhibits cell growth of human N/TERT-1 keratinocytes. Cell Signaling 19:1163-1171.

Kim DJ, Bility MT, Billin AN, Willson TM, Gonzalez FJ, Peters JM (2006). PPARbeta/delta selectively induces differentiation and inhibits cell proliferation. Cell Death Differ.13:53-60.

Bility MT, Thompson JT, McKee RH, David RM, Butala JH, Vanden Heuvel JP, Peters JM (2004).  Activation of mouse and human peroxisome proliferator- activated receptors (PPARs) by phthalate monoesters. Toxicol Sci 82:170-182.

Moses Turkle Bility