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Abstract

Background: Plants are challenged by a large number of environmental stresses that reduce productivity and even cause
death. Both chloroplasts and mitochondria produce reactive oxygen species under normal conditions; however, stress
causes an imbalance in these species that leads to deviations from normal cellular conditions and a variety of toxic effects.
Mitochondria have uncoupling proteins (UCPs) that uncouple electron transport from ATP synthesis. There is evidence that
UCPs play a role in alleviating stress caused by reactive oxygen species overproduction. However, direct evidence that UCPs
protect plants from abiotic stress is lacking.

Methodology/Principal Findings: Tolerances to salt and water deficit were analyzed in transgenic tobacco plants that
overexpress a UCP (AtUCP1) from Arabidopsis thaliana. Seeds of AtUCP1 transgenic lines germinated faster, and adult plants
showed better responses to drought and salt stress than wild-type (WT) plants. These phenotypes correlated with increased
water retention and higher gas exchange parameters in transgenic plants that overexpress AtUCP1. WT plants exhibited
increased respiration under stress, while transgenic plants were only slightly affected. Furthermore, the transgenic plants
showed reduced accumulation of hydrogen peroxide in stressed leaves compared with WT plants.

Conclusions/Significance: Higher levels of AtUCP1 improved tolerance to multiple abiotic stresses, and this protection was
correlated with lower oxidative stress. Our data support previous assumptions that UCPs reduce the imbalance of reactive
oxygen species. Our data also suggest that UCPs may play a role in stomatal closure, which agrees with other evidence of a
direct relationship between these proteins and photosynthesis. Manipulation of the UCP protein expression in mitochondria
is a new avenue for crop improvement and may lead to crops with greater tolerance for challenging environmental
conditions.
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Introduction

As the population increases, there is a growing challenge to meet

the global demand for food and to increase sustainability in agriculture

[1]. However, crop production can be severely affected by abiotic

stresses, such as salinity, drought, and temperature. These stresses lead

to a series of changes in the plant that affect molecular, biochemical,

morphological and physiological processes and result in deficient plant

growth and development [2]. The changes caused by various stressful

conditions are frequently due to a secondary stress (usually osmotic or

oxidative) that perturbs the structural and functional stability of

membrane proteins and disrupts cellular homeostasis [3,4]. These

changes are thus interconnected, and their effects on cellular

metabolism and plant growth are similar. As a consequence, abiotic

stresses often activate overlapping cell signaling pathways [3,5,6] and

cellular responses, such as the accumulation of compatible solutes and

the production of stress proteins and anti-oxidant compounds [2].

Reactive oxygen species (ROS) are produced during normal

cellular metabolism. ROS can act as signaling molecules, but

under stressful conditions, they damage a variety of cell com-

ponents [7]. A growing body of evidence has indicated that ROS

play a major role in depressing photosynthesis under stress, which

ultimately leads to reduced crop productivity [8]. In addition to

acting as the powerhouse of cells, mitochondria also have an

important role in maintaining chloroplast function during water

stress [9]. Several lines of evidence have indicated that the

uncoupling protein (UCP) has a prominent role in maintaining

mitochondrial function under normal and stressful conditions [10].

The UCP in eukaryotic organisms is a specialized protein that

uncouples electron transport from ATP synthesis in mitochondria
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[11]. UCP mediates a fatty acid (FA)-dependent, purine nucleotide

(PN)-inhibited proton leak across the inner mitochondrial membrane

[12]. Mammalian UCPs have been studied since the 1970s [13], and

until the discovery of a plant UCP (pUCP) in potato mitochondria

by Vercesi et al. [10], they were thought to be a late evolutionary

acquisition [11]. Since then, several genes encoding pUCPs have

been identified and characterized in multiple plant species

[14,15,16,17]. Molecular phylogenetic analyses of UCPs from

different plant and animal species suggest that these proteins diverged

early, but their evolutionary history is not clear [17,18,19]. Both plant

and animal UCPs have three conserved domains, which contain

‘‘energy transfer signatures’’ as well as other motifs that are specific of

each group of UCPs [19]. However, in general, the members of this

family display similar biochemical properties [17,18,19].

Although thermogenesis was initially attributed to UCPs, their

widespread presence in eukaryotes suggests that this protein may

have other functions, including acting as an antioxidant [17]. As

mentioned earlier, ROS are one of the major components of a wide

array of biotic and abiotic stresses, and mitochondria are a major

intracellular source of ROS [20]. In this context, it has been

demonstrated that energy-dissipating systems that increase respira-

tory electron transport, and consequently decrease oxidative

phosphorylation efficiency, reduce the generation of mitochondrial

ROS. Interestingly, UCP activity in the mitochondria is stimulated by

superoxide and/or products of lipid peroxidation [21,22], indicating

that UCP-mediated mitochondrial uncoupling controls mitochon-

drial ROS formation through a negative-feedback mechanism.

Moreover, the application of oxidative stress-promoting compounds,

such as H2O2 or menadione, increased the expression of UCP coding

genes in different plant species [23,24]. Mitochondrial preparations

from wheat seedlings exposed to salt (NaCl) or osmotic (mannitol)

stress (moderate or severe) had increased UCP activity, suggesting

that UCP plays a role in ROS detoxification [25]. Indirect evidence

that UCPs counteract oxidative stress was obtained when leaves of

transgenic tobacco plants that overexpress Arabidopsis thaliana UCP1

(AtUCP1) exhibited a lower level of damage and higher chlorophyll

content than WT plants after challenge with exogenous H2O2 [26].

Arabidopsis plants lacking AtUCP1 due to a T-DNA insertion

showed restricted photorespiration and lower rates of oxidation of

photorespiratory glycine in mitochondria, which were associated with

lower carbon assimilation by photosynthesis [27]. Together, these

results suggest that pUCPs contribute to plant antioxidant defenses by

reducing mitochondrial ROS production in response to stress [28].

This indirect evidence regarding the protective effect of pUCPs

against oxidative stress prompted us to assess the role of these

proteins in plant defense against abiotic stresses. Curiously,

Arabidopsis plants containing a T-DNA insertion in the AtUCP1

gene do not show increased sensitivity to cold or Cd2+, which usually

cause oxidative stress, leading to the suggestion that UCPs might not

be relevant for plant responses to these conditions [27]. To obtain

direct evidence of the potential role of UCPs, we challenged

AtUCP1-overexpressing plants [26] with salt and drought. Our data

show that UCP overexpression allowed the plants to overcome the

toxic effects of these stresses and that these responses were associated

with a lower level of ROS in plant tissues. This broad protection

associated with the dramatic effects of pUCP overexpression makes

this protein a valuable tool for crop improvement.

Results

Overexpression of AtUCP1 improved seed germination
under drought and salt stresses

Seed germination depends on several environmental clues and

is inhibited by drought and salt stresses. To evaluate the role of

AtUCP1 in seed germination under stress, seeds from WT and

transgenic tobacco plants overexpressing AtUCP1 were grown in

nutrient medium containing various concentrations of either

mannitol or NaCl (Figure 1). Under control conditions, WT and

Figure 1. Seed germination under drought and salt stresses. Seeds from wild-type (WT) and AtUCP1 transgenic lines (7, 32 and 49) were
cultivated in medium containing different concentrations of mannitol and NaCl to induce drought and salt stresses, respectively. (A) control; (B)
200 mM mannitol; (C) 300 mM mannitol; (D) 400 mM mannitol; (E) 100 mM NaCl; and (F) 175 mM NaCl. *, ** and *** indicate significant differences
relative to the controls at P,0.0001, P,0.001 and P,0.01, respectively. The values are means of 3 independent replications (each with 30 seeds).
doi:10.1371/journal.pone.0023776.g001

AtUCP1 Confers Tolerance to Abiotic Stress
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transgenic plants performed equally well and reached 100%

germination after 8 days. Interestingly, there was a trend toward

faster germination in the transgenic seeds; after 5 days, they had

reached close to 80% germination, while the WT seeds were below

60% (Figure 1a). This positive effect was more evident when the

seeds were exposed to mannitol stress or salt stress. At 200 mM

mannitol, all of the transgenic seeds had germinated almost

completely 10 days after sowing, while the control seeds did not

fully germinate until day 15 (Figure 1b). As the mannitol

concentration increased to 300 mM, germination of both the

WT and the transgenic seeds was significantly inhibited, but the

effect was more pronounced in the WT seeds (Figure 1c). At

400 mM mannitol, the germination of WT seeds was completely

inhibited, while 40% of the AtUCP1 seeds were still able to

germinate (Figure 1d).

The seeds from the AtUCP1 lines also showed a higher

germination rate under salt stress. When 100 mM NaCl was

added to the medium, the percentage of germinated transgenic

seeds varied from 80% to 95%, while only 45% of WT seeds

germinated after 10 days (Figure 1e). The time required to reach

50% germination was approximately 7 days for the AtUCP1 seeds

and approximately 11 days for the WT seeds (Figure 1e). When

challenged with 175 mM NaCl for 15 days, the difference between

the AtUCP1 and WT seeds was enhanced, as 60% of the

transgenic seeds germinated, while the WT seeds failed to

germinate (Figure 1f). These results indicate that AtUCP1

overexpression enhanced the ability of seeds to germinate under

both drought and salt stresses.

Phenotype of transgenic plants under drought and salt
stresses

To further evaluate the response of the transgenic tobacco lines

to drought and salt stresses, 5-week-old plants were irrigated with

200 mM mannitol or 175 mM NaCl for 10 days and then watered

for 3 days for recovery. Control plants were irrigated with water

throughout the experiment. Drought- and salt-tolerant phenotypes

were clearly evident in the AtUCP1-overexpressing transgenic

tobacco lines (Figure 2). The leaves of WT plants exhibited severe

wilting under 200 mM mannitol, whereas those of the transgenic

lines exhibited a normal phenotype. Upon severe salt stress, which

killed the WT plants, the transgenic plants were able to retain a

normal phenotype. These data indicate that AtUCP1 overexpres-

sion not only enhanced seed germination but also protected fully

grown plants from both salt and drought stresses.

Physiology of transgenic plants under drought and salt
stresses

The water content in the leaves of the plants was evaluated after

10 days under drought and salt stress and three days of recovery

with pure water (Figure 3a). Both stresses reduced the water

content by 3–5% in WT plants, while plants overproducing

AtUCP1 were able to maintain their water content unaffected.

These results indicate that the AtUCP1-overexpressing plants were

able to maintain turgidity under stress and suggest the occurr-

ence of an osmotic adjustment and/or the activation of other

defenses that prevent cellular dehydration. The effect of AtUCP1

on shoot dry mass was also evaluated. As shown in Figure 3b, WT

plants had a reduction in shoot dry mass of 46% under drought

and 58% under salt stress. In contrast, AtUCP1 overexpression

allowed transgenic plants to maintain their shoot dry mass almost

unaffected, in the range of 94–99% of plants growing under

control conditions. Under stressful conditions, AtUCP1 plants

accumulated more than 2-fold more shoot dry mass in drought

stress and 3-fold more in salt stress than WT plants.

Stomatal conductance, transpiration rate, net photosynthesis

and internal leaf CO2 concentration were also measured in the

Figure 2. Phenotypes of wild-type (WT) and AtUCP1 transgenic tobacco plants under drought and salt stresses. First row: WT plants
and three AtUCP1-overexpressing lines (7, 32 and 49) were grown under control conditions for 5 weeks. Middle row: plants watered with 200 mM
mannitol for 10 days and then irrigated with water for 3 days. Bottom row: plants irrigated for 10 days with 175 mM NaCl and then irrigated with
water for 3 days. A total of 5 plants from each line were used in the assay, and a representative plant is shown.
doi:10.1371/journal.pone.0023776.g002

AtUCP1 Confers Tolerance to Abiotic Stress

PLoS ONE | www.plosone.org 3 August 2011 | Volume 6 | Issue 8 | e23776



tobacco plants after 5 and 10 days under stress and after 3 days of

recovery. Under control (well-watered) conditions, AtUCP1 and

WT plants exhibited no variations in any of these physiological

variables throughout the experiment, as expected (Figure 4).

Interestingly, the stomatal conductance (gs), transpiration rates

(E) and net photosynthesis (A) were higher in the AtUCP1-

overexpressing plants than in WT plants under control conditions.

All of these physiological variables were negatively affected by

both drought and salt stresses in both WT and transgenic plants;

however, the latter generally performed better than the former for

all of the parameters evaluated. The transgenic plants also

recovered gs levels after they were allowed to recover from salt

or drought stress (day 13 in Figure 4a–c). E also was recovered

after salt stress (Figure 4f), and A was recovered after drought stress

(Figure 4h) in AtUCP1 plants. Similar Ci values were found under

normal growth conditions, but during most of the stress period,

they were higher in AtUCP1 plants. The greatest difference

between AtUCP1 and WT plants was observed for A and Ci in

salt-stressed plants because the transgenic plants were able to

maintain higher and more constant rates, whereas WT plants were

strongly affected (Figure 4g–l).

Respiration measured as CO2 release was also evaluated during

the stress and after 3 days of recovery (Figure 5). Under control

conditions, no differences were observed between AtUCP1 and

WT plants. The absence of changes in respiration was observed

also in Arabidopsis plants overexpressing an alternative mitochon-

drial oxidase. However, drought and salt stress caused a marked

increase in respiration in WT plants: after 10 days, respiration

increased by 2.8 fold in drought stressed plants and 3.1 fold under

salt stress. Even after the three days of recovery, respiration in WT

plants did not returned to control levels. Respiration in AtUCP1

overexpressing plants also increased in response to these stress

conditions, peaking at 1.7-fold higher on average after 10 days of

drought stress and only 1.3-fold higher under salt stress. In

addition to the lower increase under stress, respiration in AtUCP1

plants returned to control levels after three days.

Hydrogen peroxide detection in leaves of drought- and

salt-stressed plants. As hypothesized earlier, the tolerance of

the AtUCP1-overexpressing lines to abiotic stresses might be

related to a reduction in ROS levels. To test this possibility, the

accumulation of hydrogen peroxide was evaluated in the leaves of

transgenic and WT plants (30 day old) submitted to salt stress and

drought stress. As shown in Figure 6 under control conditions,

AtUCP1 plants showed significantly lower levels of H2O2 than

WT plants (82% on average), and these levels were not affected by

drought or salt stress. After 10 days of drought stress, H2O2 levels

in WT plants increased by 31%, while salt stress caused a stronger

effect, increasing H2O2 by 81%.

Discussion

Enhancing plant tolerance to abiotic stresses involves multiple

mechanisms and different physiological and biochemical pathways

[2,29]. Different strategies have been implemented to improve

tolerance in crop plants, and transgenic plants are a powerful and

promising approach. One of the major consequences of almost all

environmental stresses is the appearance of secondary oxidative

stress at the cellular level, and strategies aimed at increasing the

antioxidant potential of plants have been shown to improve

tolerance to many abiotic stresses. Because genes encoding pUCPs

are induced by multiple abiotic stresses and by stress-inducing

compounds [16,24,30,31] and because transgenic plants that

overexpress pUCPs are less sensitive to oxidative stress caused by

exogenous H2O2 exposure [26], we searched for direct evidence of

the protective role of AtUCP1 in plant responses to abiotic stresses.

The germination process is influenced by water availability and

is critical for plant survival and early growth [32]. The final task of

all metabolic, cellular and molecular mechanisms is to allow the

radicle to emerge from the seed. During germination, ROS are

produced by early seed imbibition; therefore, seed germination is

in fact a potentially harmful process [33]. In addition, seeds rich in

lipids (like tobacco) may generate ROS more actively because b-

oxidation of fatty acids requires more oxygen to produce ATP

[33]. Therefore, during germination, antioxidant compounds and

enzymes seem to play an important role in preventing the

damaging effects of ROS [33,34]. Under drought or salt stress,

seed germination may be affected, and a delay or even failure to

germinate may result [35]. Because drought, salt and other stresses

induce ROS production in plants [36], seed germination is

expected to be more severely affected by ROS under stressful

conditions. Here, we showed that transgenic tobacco plants that

overexpress AtUCP1 exhibit an increased tolerance to salt and

drought stresses during seed germination and early seedling

development (Figure 1). Curiously, we observed that even under

Figure 3. Water content (A) and shoot dry mass (B) in stressed leaves of wild-type (WT) and AtUCP1 transgenic plants (7, 32 and
49). Thirty-day-old plants were exposed for 10 days to 200 mM mannitol or 175 mM NaCl and then recovered with pure water for 3 days. In the
controls, plants were irrigated with water. The bar represents the mean, and I represents the standard deviation from three independent experiments
(n = 5). * and ** indicate significant differences relative to the control at P,0.0001 and P,0.001, respectively.
doi:10.1371/journal.pone.0023776.g003

AtUCP1 Confers Tolerance to Abiotic Stress
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control conditions, the transgenic seeds germinated faster than the

WT seeds, suggesting that ROS produced during germination

may be attenuated by the overexpression of the AtUCP1 gene. It

would be interesting to obtain seeds of transgenic crops that

overexpress UCPs and test their longevity because the relationship

between ROS and loss of seed viability has been well established

[37]. This information could have economic benefits for

agriculture due to an increase in seed storage time.

The protective role of AtUCP1 was also observed in mature

plants challenged with drought or salt stress (Figure 2). The ability

of AtUCP1-overexpressing plants to withstand these stresses was

correlated with higher water levels in their leaves (Figure 3a) and

higher biomass (Figure 3b). Moreover, AtUCP1-overexpressing

plants exhibited higher stomatal conductance even under control

conditions, and they were less affected under salt and drought

stresses (Figure 4a–c). The higher stomatal conductance might be

in part explained by the interaction between ROS and abscisic

acid (ABA). ABA induces stomatal closure mainly by provoking an

efflux of potassium and some anions from guard cells [38]. ABA-

induced stomatal closure involves the production of ROS that

activate Ca2+ influx channels in the plasma membrane [39].

Studies with ost1 (open stomata 1) Arabidopsis mutants, which

display a reduced ability to close their stomata in response to

drought stress, suggest that OST1 acts in the interval between

ABA perception and ROS production. Supplementation of ost1

mutants with ABA restores stomatal closure, but the ROS levels

Figure 4. Effects of drought and salt stresses on stomatal conductance, transpiration rate, net photosynthesis and internal leaf CO2

concentration of wild-type (WT) and AtUCP1 transgenic plants. Thirty-day-old plants were exposed for 10 days to 200 mM mannitol or
175 mM NaCl and then recovered with pure water for 3 days. A–C: stomatal conductance (gs); D–F: transpiration rate (E); G–I net photosynthesis (A);
J–L: internal leaf CO2 concentration (Ci). A, D, G and J: control treatment. B, E, H and K: 200 mM mannitol. C, F, I and L: 175 mM NaCl. * and ** indicate
significant differences relative to the control at P,0.0001 and P,0.001, respectively.
doi:10.1371/journal.pone.0023776.g004

AtUCP1 Confers Tolerance to Abiotic Stress
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were similar in untreated and treated mutants [40]. In our study,

AtUCP1 transgenic plants showed higher stomatal conductance

(greater stomatal aperture) than WT plants even under control

conditions (Figure 4j–l), which could reflect the lower production

of ROS in these plants. In stressed plants, the mechanism

mediated by ABA and ROS might be disrupted. However, Nunes-

Nesi et al. [41] found evidence that plants with mitochondrial

impairments have increased stomatal closure, which in turn

reduces photosynthesis. Interestingly, guard cells have an unusu-

ally high density of mitochondria [42]. The overexpression of

AtUCP1 might also improve mitochondrial function, which could

contribute to a greater stomatal aperture and consequently to the

higher gs observed in the transgenic plants. Further studies focused

on the kinases and phosphatases involved in the processes

mediated by ABA and ROS [40] may provide additional infor-

mation on the possible role of UCPs during stomatal closure.

When stomata are open, transpiration rates increase, which

allows water to flow faster in the xylem due to a reduction in the

water potential [43]. Thus, the higher water content in the

transgenic tobacco plants that overexpress AtUCP1 (Figure 3) is

probably a consequence of increased water flow from the roots.

In the roots of plants irrigated with salt or mannitol, this pheno-

menon would prevent wilting. Therefore, the effect of AtUCP1 on

the stomatal aperture in tobacco plants may be beneficial for the

water balance of the entire plant. In fact, drought tolerance has

been associated with stomatal control in plants [44].

As mentioned earlier, the tobacco plants that overexpress

AtUCP1 also exhibited tolerance to salt stress (Figures 1e–f and 2).

Excess NaCl imposes both ionic toxicity and osmotic stress on

plants, which cause severe nutritional disorders and oxidative

stress [45]. Plants with tolerance to salinity frequently have an

associated capacity to extinguish ROS. Mitochondria from roots

of the salt-tolerant tomato Lycopersicon pennellii exposed to NaCl had

lower levels of H2O2 and less membrane peroxidation [46]. These

plants had increased levels of ascorbate and glutathione and higher

ascorbate and guaiacol peroxidase activities. Peroxisomes of this

species also showed decreases in H2O2 and membrane peroxida-

tion and increases in the activities of superoxide dismutase,

ascorbate peroxidase and catalase [46]. These responses were not

observed in the sensitive species Lycopersicon esculentum. Similar

variations in the antioxidative machinery have been observed in

other plant species [47]. Transgenic Arabidopsis plants that

overexpress mitochondrial Mn-SOD showed significant tolerance

to NaCl [48].

Drought and salinity affect photosynthesis both by altering

photosynthetic metabolism and by ROS-mediated damage to the

photosynthetic apparatus [49]. AtUCP1 overexpression allowed

tobacco plants to exhibit higher rates of photosynthesis than wild-

type plants even under control conditions, and this positive effect

was also evident under both salt and drought stress (Figure 4g–i).

Under salt stress, the protective effect of AtUCP1 was higher than

under drought stress. However, it is interesting to note that Ci was

similar in WT and AtUCP1 plants under normal conditions,

indicating that increased photosynthesis in the transgenic plants is

a complex metabolic process that cannot be simply explained by

the increase in CO2 availability due to the higher gs in these

plants.

The physiology that underlies the effect of AtUCP1 on

photosynthesis was recently investigated [27]. These authors used

an AtUCP1 knockout mutant of Arabidopsis and found that this

protein acts mainly by adjusting the bioenergetic balance of the

respiratory chain during photosynthesis, which agrees with

previous proposals by Vercesi et al. [17]. Plants lacking AtUCP1

not only had defects in photorespiration but also had lower

photosynthetic carbon assimilation rates. Thus, our data indicate a

Figure 6. Quantification of hydrogen peroxide in leaves of
wild-type (WT) and AtUCP1 transgenic tobacco plants. Thirty-
day-old plants were exposed for 10 days to 200 mM mannitol or
175 mM NaCl. In the controls, plants were irrigated with water. The bar
represents the mean (6S.D.) from three independent experiments
(n = 5). * indicates significant differences relative to the control at
P,0.0001. gFW: grams of fresh weight.
doi:10.1371/journal.pone.0023776.g006

Figure 5. Respiration in the leaves of wild-type (WT) and AtUCP1 transgenic tobacco plants. Thirty-day-old plants were exposed for 10
days to 200 mM mannitol or 175 mM NaCl and then recovered with pure water for 3 days. Values represent the mean of three replicate
measurements. * indicates significant differences relative to the control at P,0.0001.
doi:10.1371/journal.pone.0023776.g005

AtUCP1 Confers Tolerance to Abiotic Stress
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correlation between the protective role of AtUCP1 against ROS

generated by photosynthesis and tolerance to abiotic stresses.

Consistent with our findings, Pastore et al. [25] proposed that

pUCPs play a key role in durum wheat adaptation to drought by

lowering drought-induced mitochondrial ROS formation through

a feedback mechanism. Interestingly, another energy-dissipating

system present in plants, the alternative oxidase (AOx) system, was

also shown to lower mitochondrial ROS formation [50]. Pea

protoplasts with lower cytochrome oxidase and AOx activities due

to treatment with specific inhibitors had increased activities of

several antioxidant enzymes, indicating that perturbations of the

ability of mitochondria to maintain ROS at the optimal levels have

a clear negative effect on photosynthesis [51]. These results are in

agreement with the concept that energy-dissipating systems such as

pUCP and AOx, which are able to tune oxidative phosphoryla-

tion, are directly involved in organelle protection against the

harmful action of reactive oxygen species.

Interestingly, Rivero et al. (2007) found that delayed leaf sene-

scence due to increased cytokinin levels caused extreme drought

tolerance in transgenic tobacco plants overexpressing IPT, a gene

encoding isopentenyltransferase, which is a key enzyme in the

cytokinin biosynthesis. IPT overexpressing plants showed higher

levels of photosynthesis under stress, and surprisingly, they also

showed increased expression of genes involved in the control of

ROS. The authors hypothesized that both factors contributed to the

drought tolerance observed in the transgenic IPT plants. We believe

that this effect is also the case for the AtUCP1 plants exposed to

drought and salt.

The impact of abiotic stresses on plant productivity can also be

due to their effects on respiration [9]. Between 30 and 70% of the

CO2 fixed each day is released back into the atmosphere byplant

respiration [9]. In water-stressed plants, the percentage of fixed

carbon that is respired is predicted to be higher because, in general,

drought has a greater proportional inhibition on photosynthesis than

on plant respiration [8]. The effects of drought stress on plant

respiration vary according to the severity of the stress and also

among species [52]. The increase in respiration observed in WT

plants could reflect a strategy by the plant to increase ATP levels to

repair the damage caused by drought and salt stress, as demon-

strated by Slot et al [53] in drought-stressed Geum urbanum leaves.

Considering that AtUCP1 overexpression reduced the deleterious

effects of abiotic stress, the need for higher respiration rates was

reduced, leading to higher biomass accumulation, which might also

be enhanced by the higher photosynthesis under stress. It is

interesting to note that overexpression of AtUCP1 did not cause

an increase in respiration under control conditions. This result

probably reflects the tight regulation of the uncoupling activity of

UCPs in vivo [17,54]. Moreover, Arabidopsis plants with increased

levels of a mitochondrial alternative oxidase also had no changes in

total respiration rates but exhibited a reduction of ROS production

[55].

The fact that AtUCP1-overexpressing plants have a higher

tolerance to abiotic stresses conflicts with the absence of increased

sensitivity to Cd2+, cold and antimycin A (a respiratory inhibitor)

in plants lacking AtUCP1 activity due to a T-DNA insertion [27].

However, the activity of a combination of proteins, including AOx

[56] and NADH dehydrogenase [57], which act in energy

dissipation, could compensate for the lower UCP activity, as

proposed by Sweetlove et al. [27]. In addition, due to the

multigene nature of the UCP family in Arabidopsis [18], other

UCP isoforms could also compensate for the AtUCP1 mutation.

Our data suggest that increased AtUCP1 levels provide an

enhanced ability to overcome ROS overproduction under abiotic

stresses.

Differences in peroxide levels, stomatal conductance, transpira-

tion rates and net photosynthesis rates were found between wild-

type and AtUCP1 transgenic plants. Therefore, a phenotypic

comparison between transgenic and non-transgenic plants showed

clear evidence that overexpression of AtUCP1 in transgenic

tobacco plants increases tolerance to different abiotic stresses.

Important differences were also noted between other parameters,

such as photosynthesis, respiration, leaf water content, respiration,

and these differences probably underlie the various mechanisms of

tolerance. Although it was already known that overexpression of

AtUCP1 in transgenic tobacco plants increases tolerance to

oxidative stress caused by exogenous H2O2 [26], we obtained

direct evidence for the superior performance of these transgenic

plants under abiotic stresses that are known to cause ROS

production. Our data highlight the protective role of pUCPs in vivo

and provide a new approach to developing plants with enhanced

tolerance to various abiotic stresses. In addition, our results suggest

that transforming plants with AtUCP1 may enhance seed viability,

improve the water balance in the entire plant and increase plant

growth through increased photosynthesis.

Materials and Methods

Plant material
Nicotiana tabacum SR1 plants were transformed with an ex-

pression cassette comprising a double 35S promoter that controls

the AtUCP1 gene from A. thaliana, as described previously [26].

Three independent and homozygous lines of AtUCP1-expressing

tobacco plants (AtUCP1-7, AtUCP1-32, and AtUCP1-49) were

chosen for this study.

Seed germination assays
To determine the effects of drought and salt stress on seed

germination and seedling growth, seeds from transgenic and wild-

type tobacco plants were used. Seeds were surface-sterilized with

70% ethanol for 1 min, incubated in 2% NaClO for 30 min and

rinsed five to six times in sterile distilled water. Seeds were sown in

Petri dishes (30 seeds per dish) containing solid Murashige-Skoog

(MS) medium, pH 5.8, in a chamber at 23uC with a 16/8 h light/

dark photoperiod (300–400 mmol photons m22 s21). Mannitol (0,

200, 300 and 400 mM) or NaCl (0, 100 and 175 mM) were

included in the medium to induce drought or salt stress,

respectively. The number of germinated seeds was counted daily;

germination was defined as the emergence of the hypocotyl from

day 1 to day 15.

Gas exchange parameters measurements in tobacco
plants

Seeds of the WT and AtUCP1-overexpressing lines were germi

nated for 16 days in Petri dishes containing MS medium at

pH 5.8. Seedlings were transferred to 500-ml pots containing

Plantmax HT (Eucatex, Brazil) for 5 weeks in a growth chamber at

25uC with a 16/8 h light/dark photoperiod. Plants were fertilized

weekly with nutrient solutions (EPPQ, Brazil). Each plant was

irrigated with 70 ml of a 175 mM NaCl solution for 10 days and

then irrigated for 3 days with pure water for recovery [29].

Drought stress was performed in a similar manner but with a

200 mM mannitol solution [29].

To estimate the leaf water content, plant samples were

incubated at 80uC for 24 h to evaluate their dry weight, as

described previously [58]. Leaf water content was calculated as

(FW2DW)/(FWx100), where FW is the fresh weight and DW is

the dry weight. An infrared gas analyzer (IRGA - LCpro+; ADC

Bioscientific, UK) was used to estimate the stomatal conductance
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(gs), transpiration rate (E), net photosynthetic rate (A) and internal

leaf CO2 concentration (Ci) in completely expanded leaves from

the same positions on the tobacco plants.

To measure leaf respiration, 5 weeks-old plants were grown in a

chamber at 25uC with a 16/8 h light/dark period. To avoid

transient metabolic activities following darkening, which is known

as light enhanced dark respiration, measurements of night

respiration were performed after 3 hours acclimation to darkness.

Carbon dioxide production was measured with an infra-red gas

analyzer (IRGA) as described by Pinelli and Loreto [59].

Hydrogen peroxide determination
A modified ferrous ammonium sulfate/xylenol orange method

was used [60]. After exposure of 30-day-old plants to different

treatments (well irrigated, drought and salt stress) for 10 days,

300 mg of leaves was extracted in 1.5 ml methanol at 0uC. After

being ground in a mortar, samples were centrifuged at 10,000 g

for 5 min, and 500 mL of Fe(NH4)2(SO4)2 1 mM and 200 mL of

H2SO4 250 mM were added to 100 ml of the supernatant. The

reaction mixture remained in the dark for 5 minutes, and then

100 mL of 1 mM xylenol orange was added. The mixture was

again brought into a dark condition for 20 minutes. The readings

were taken on a spectrophotometer at 560 nm. A standard curve

with known concentrations of H2O2 (0, 2.5, 5, 7.5, 10, 12.5 and

15 mM) was used as a reference.

Statistical analysis
The mean values, standard deviation and t-test values were

obtained with the pre-loaded software in Excel for statistical

calculations (http://www.Physics.csbsju.edu/stats/t-test.html). A

non-linear regression analysis was performed between RRG

(dependent variable) and Al concentrations (independent variable)

using the Weibull function y = 100/exp(ax)b as the mathematical

model.
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