<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPIDEM 3999</td>
<td>FULL-TIME DISSERTATION RESEARCH</td>
<td>0.0</td>
</tr>
<tr>
<td>HUGEN 2010</td>
<td>BIOINF RESOURCES GENETICISTS</td>
<td>0.0</td>
</tr>
<tr>
<td>HUGEN 2011</td>
<td>SCIENTIFIC WRITING HUMN GENETC</td>
<td>0.0</td>
</tr>
<tr>
<td>HUGEN 2021</td>
<td>SPECIAL STUDIES</td>
<td>0.1 TO 15.0</td>
</tr>
<tr>
<td>HUGEN 2022</td>
<td>HUMAN POPULATION GENETICS</td>
<td>0.0</td>
</tr>
<tr>
<td>HUGEN 2025</td>
<td>HUMAN GENETICS SEMINAR</td>
<td>0.0</td>
</tr>
<tr>
<td>HUGEN 2026</td>
<td>SPECIAL STUDIES HUMAN GENETICS</td>
<td>0.0</td>
</tr>
</tbody>
</table>

EPIDEM 3999 FULL-TIME DISSERTATION RESEARCH (Credit(s): 0.0)

Doctoral candidates who have completed all credit requirements for the degree, including any minimum dissertation requirements, and are working full-time on their dissertations may register for this course. While the course carries no credits and no grade, students who enroll in "full-time dissertation study" are considered by the University to have full-time registration status.

HUGEN 2010 BIOINF RESOURCES GENETICISTS (Credit(s): 0.1)

Corequisite(s): HUGEN 2022 and HUGEN 2040

The focus of this course is the online bioinformatic resources available to geneticists. Students will learn to locate and use such resources and interpret the data therein to inform the development of research questions, aid in clinical decision-making, and enhance the understanding and contextualization of research results.

[New course for fall 2016, term 2171. For HUGEN students.]

HUGEN 2011 SCIENTIFIC WRITING HUMN GENETC (Credit(s): 0.1)

Writing and communication skills are amongst the most important assets for any human genetics researcher and/or public health genetics professional. By facilitated discussions and reading and writing exercises/assignments, Scientific Writing in Human Genetics is designed to empower Human Genetics students to establish the communication mindset to write clear and compelling scientific narratives in plain language, utilize the writing resources available on campus and online, improve their scientific writing skills, and complete a solid draft of the Background/Introduction section of their MPH essay, MS Thesis, or PhD research proposal/comprehensive exam document (and possibly, additional sections, including methods, results, or the entire MPH essay) or another academic work with permission of the instructor. The ability to write and use standard English language is required. Whether English is your first or second language, if you are not comfortable writing grammatically correct and properly punctuated English, an "ESL course" is recommended.

[New course, fall 2017, term 2181.]

HUGEN 2021 SPECIAL STUDIES (Credit(s): 0.1 TO 15.0)

Qualified students may undertake advanced work or research with the approval and under the guidance of a member of the staff.

HUGEN 2022 HUMAN POPULATION GENETICS (Credit(s): 0.2)

This survey course covers the principles of population genetics as applicable to human populations, including (1) the laws of inheritance that govern the organization of the genomes in populations, (2) the evolutionary forces and phenomena that impact genetic diversity in human populations, and (3) the foundational concepts of genetic epidemiology and gene discovery.

[Effective fall 2017, term 2181, revised course description.]

HUGEN 2025 HUMAN GENETICS SEMINAR (Credit(s): 0.0)

Human Genetics Seminars present current genetics methodology, theory, and data.

HUGEN 2026 SPECIAL STUDIES HUMAN GENETICS (Credit(s): 0.3)

This course is designed to provide advanced undergraduates and graduate students with directed, intensive training in laboratory, statistical or clinical research methods relevant to human genetics. These specialized skills are not available in regularly taught courses in the university. Each special study is designed in consultation with an individual member of the human genetics faculty.

[Effective fall 2017, term 2181, revised course description.]
HUMAN GENETICS JOURNAL CLUB MEETS ONCE A WEEK DURING THE FALL SEMESTER TO GIVE STUDENTS AND FACULTY A CHANCE TO PRESENT EXCITING RESEARCH WHICH THEY FEEL IS RELEVANT TO THE DEPARTMENT. THE AUDIENCE IS OTHER STUDENTS AND FACULTY FROM THE DEPARTMENT AND OTHER DEPARTMENTS OF THE SCHOOLS OF HEALTH SCIENCES. PRESENTATIONS ARE INFORMAL AND MEANT TO GIVE STUDENTS THE EXPERIENCE NECESSARY TO BE AN EFFECTIVE COMMUNICATOR, AND TO TEACH THEM CRITICAL SKILLS FOR EVALUATING RESEARCH PUBLICATIONS.

HUMAN GENETICS JOURNAL CLUB AND PEER REVIEW MEETS ONCE PER WEEK FOR ONE HOUR AND PROVIDES STUDENTS AND FACULTY WITH AN OPPORTUNITY TO PRESENT EXCITING RESEARCH IN AN INFORMAL FORMAT. THE PURPOSE OF THE COURSE IS TO HONE STUDENTS' ORAL AND WRITTEN CRITICAL EVALUATION SKILLS VIA ORAL PRESENTATIONS OF PUBLISHED LITERATURE, AS WELL AS A WRITTEN REVIEW OF A MANUSCRIPT. UPON COMPLETION OF THE COURSE, STUDENTS WILL BE ABLE TO ORALLY CRITIQUE A PAPER FROM THE LITERATURE AND ALSO CRITICALLY REVIEW A MANUSCRIPT FOR PUBLICATION.

This course presents a literature-based approach to understanding and interpreting results from gene mapping papers in the field of human genetics. Traditional and state-of-the-art genetic mapping methodologies will be explored. Students should have a basic understanding of biostatistics [BIOST 2041], molecular genetics [HUGEN 2034 or 2040], and population genetics [HUGEN 2022].

THE ROLE OF CHROMOSOMES IN HUMAN DISEASE IS DISCUSSED AFTER A THOROUGH BACKGROUND ON CHROMOSOME STRUCTURE AND FUNCTION IS PRESENTED. TOPICS COVERED INCLUDE CYTOGENETIC METHODOLOGY, ANEUPLOIDY, CHROMOSOME REARRANGEMENTS, CHROMOSOMES AND CANCER, CHROMOSOME BREAKAGE SYNDROMES, AND FRAGILE SITES ON HUMAN CHROMOSOMES.

STUDENTS PARTICIPATE IN LABORATORY EXERCISES TO BECOME ACQUAINTED WITH CYTOGENETICS LABORATORY PROCEDURES INCLUDING CELL CULTURE, CHROMOSOME PREPARATION, CHROMOSOME BANDING, AND KARYOTYPING. CHROMOSOME ANALYSIS AND KARYOTYPE INTERPRETATION ARE PRACTICED.

THIS COURSE PROVIDES STUDENTS WITH AN UNDERSTANDING OF THE MOLECULAR AND BIOCHEMICAL GENETIC APPROACHES TO UNDERSTANDING GENETICALLY DETERMINED SUSCEPTIBILITY TO COMMON DISEASE. THIS WILL BE PRESENTED USING SELECTED EXAMPLES OF COMPLEX HUMAN DISEASES (CARDIOVASCULAR DISEASE, NEURODEGENERATIVE DISEASES, DIABETES, LUPUS, AGE-RELATED MACULAR DEGENERATION, CANCER AND OSTEOPOROSIS). RISK OF COMMON, COMPLEX DISEASES IS DETERMINED BY GENOTYPES AT MULTIPLE GENETIC LOCI AND THE COMPLEX INTERACTION OF GENETIC VARIATION AND ENVIRONMENTAL EXPOSURES. RISK OF ALMOST EVERY COMMON DISEASE IS INFLUENCED BY GENES, BUT THE RELATIONSHIP BETWEEN GENOTYPE AND DISEASE PHENOTYPE IS WEAK COMPARED TO THAT OBSERVED WITH RARE MENDELIAN TRAITS. HOWEVER, UNDERSTANDING THE CONTRIBUTION OF GENES TO COMMON DISEASE SUSCEPTIBILITY IS IMPORTANT TO PUBLIC HEALTH.

This course addresses fundamental concepts important to genetic counseling principles and practice.

This course addresses fundamental concepts important to genetic counseling principles and practice.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit(s)</th>
<th>Description</th>
</tr>
</thead>
</table>
| HUGEN 2036 | GENETIC COUNSELING INTERNSHIP | 04.0 | For this course, students will participate in supervised genetic counseling clinical rotations in a variety of specialty areas. The lectures that are part of the course will address topics relevant to clinical genetics and counseling.
[For Genetic Counseling students.]
[Effective 2017, term 2181, revised course description.] |
| HUGEN 2038 | INTERVNTN SKILL GENETIC CNSLG | 03.0 | FOCUSES ON THE UNDERSTANDING OF THEORIES OF INTERVENTION, SKILL DEVELOPMENT AND APPLICATION TO GENETIC COUNSELING. THE COURSE AIMS AT SENSITIZING STUDENTS TO THE ETHICAL DILEMMAS FACED BY AFFECTED FAMILIES AND HEALTH-CARE PROVIDERS.
(For Genetic Counseling students) |
| HUGEN 2039 | RISK CALCULATION GENETIC CNSLG | 01.0 | PROVIDES TRAINING IN CALCULATING RISK OF DISEASE, OR CARRIER STATUS, IN A VARIETY OF GENETIC COUNSELING SITUATIONS BY LEARNING TO IDENTIFY THE SOURCES OF RISK IN THE COUNSELEE'S PERSONAL AND FAMILY HISTORY AND TO ANALYZE AND SYNTHESIZE A SINGLE OVERALL RISK OF DISEASE FROM THESE COMPETING RISKS. |
| HUGEN 2040 | MOL BASIS OF HUMN INHERITED DS | 03.0 | This course will provide an overview of selected human inherited disorders and integrate clinical descriptions with recent genetic, molecular genetics and biochemical insights. Current state of the art molecular genetics methodologies will be integrated into the overviews.
[Effective 2017, term 2181, revised course description.] |
| HUGEN 2041 | BIOETHICS | 03.0 | THIS COURSE IS AN ADVANCED TREATMENT OF SIGNIFICANT PROBLEMS IN MEDICAL ETHICS. TOPICS MAY INCLUDE EUTHANASIA, RIGHTS TO HEALTH CARE, COMPETENCY, ALLOCATION OF RESOURCES, AND OTHER ISSUES OF MEDICAL ETHICS. |
| HUGEN 2047 | CLIN GENETICS CASE CONFERENCE | 01.0 | WITH CLINICAL CASES AND SPECIMENS FROM VARIOUS CLINICAL GENETICS SERVICE UNITS, THIS SEMINAR ILLUSTRATES AND PROVIDES INSIGHTS INTO THE BIOLOGIC, MEDICAL, ETHICAL, AND EMOTIONAL ASPECTS OF GENETIC DISORDERS. |
| HUGEN 2049 | INTRODUCTION PUBLIC HEALTH GENETICS | | This course provides a framework in which to assess how advances in genomics may be applied to public health practice and policies that affect both individuals and society. In addition, the ethical, legal, and social consequences of historical, current, and future interventions are considered.
[Effective 2017, term 2181, revised course description.] |
| HUGEN 2050 | PUBLIC HEALTH GENETICS PRACTCM | 01.0 to 06.0 | The practicum is a short term field placement (minimum 200 hours of public health oriented work) with an organization or agency that is relevant to the student’s area of interest. Each placement must be agreed upon by the student and the MPH program advisor.
[For PH Genetic students and PH Genetic certificate.]
[Effective 2017, term 2181, revised course description.] |
HUGEN 2051 INBORN ERRORS OF DEVELOPMENT
Credit(s): 02.0
This course focuses on the connections between human development and inherited disease. The course will include core principles of development of the body plan and signaling pathways involved in development and differentiation. These biological processes will be used to categorize inherited human diseases, understand disease mechanisms, and the current efforts to develop targeted treatments.

HUGEN 2052 ETHCL ISS CLN & PUBHL GENTICS
Corequisite(s): HUGEN 2035 or HUGEN 2049
Credit(s): 01.0
This course is designed to explore ethical issues as they relate to genetics and genomics in both the clinical and public health contexts. This seminar series provides an ethical framework for analyzing arguments in the literature and cases arising in clinical and research contexts and proceeds throughout the semester with a discussion-based format that encourages students to assume responsibility for engaging in ethical analysis.

HUGEN 2053 APPLCS IN PH GENTCS & GENOMCS
Corequisite(s): HUGEN 2049
Prerequisite(s): BIOST 2041 or BIOST 2011
Credit(s): 02.0
This graduate level course builds on the basic components of public health genetics and genomics and provides students with the opportunity to discuss and apply these concepts to public health. The goal of this course is for students to apply knowledge and skills learned across public health disciplines, especially the use of genetic principles, in a public health practice setting. Using current issues in public health genetics, students will also demonstrate mastery of essential competencies through data analysis, and oral and written communication.

HUGEN 2070 BIOINF FOR HUMAN GENETICS
Prerequisite(s): HUGEN 2022 and BIOST 2041
Credit(s): 03.0
This course focuses on manipulation and management of human genetic data, with an emphasis on association and linkage studies. The course will cover bioinformatics for genome-wide association analysis, sequence data, and integrated analyses, as well as the R statistical computing language. A key component of the course will be hands-on analyses of example data sets.
(Note: Students should also have basic computing and programming skills.)

HUGEN 2080 STATISTICAL GENETICS
Prerequisite(s): HUGEN 2022 and BIOST 2041
Credit(s): 03.0
An advanced course which discusses the principles and practice of statistical genetics in the area of genetic epidemiology of human diseases and traits. The course will cover statistical modeling and methodology in familial aggregation, linkage analysis and association analysis; the course includes hands-on experience with current computer programs used in these research areas.

Prequisites: HUGEN 2022, POPULATION GENETICS and BIOST 2041, BIOSTATISTICS METHODS I (and BASIC COMPUTING AND PROGRAMMING SKILLS).

HUGEN 3010 RESEARCH & DISSERTATION PH.D.
Credit(s): 01.0 to 15.0
Dissertation credits for qualified doctoral students in the department of human genetics.