Characterising the effect of antimalarial drugs on the maturation and clearance of murine blood-stage *Plasmodium* parasites in vivo

David S. Khoury, Deborah Cromer, Trish Elliott, Megan S.F. Soon, Bryce S. Thomas, Kylie R. James, Shannon E. Best, Rosemary A. Aogo, Jessica A. Engel, Kate H. Gartlan, Jasmin Akter, Ismail Sebin, Ashraful Haque, Miles P. Davenport

A R T I C L E I N F O

Article history:
Received 17 January 2017
Received in revised form 18 April 2017
Accepted 23 May 2017
Available online 31 August 2017

Keywords:
Malaria
Plasmodium berghei
Artemisinin
Mefloquine
Clearance
In vivo
Drug action

A B S T R A C T

The artemisinins are the first-line therapy for severe and uncomplicated malaria, since they cause rapid declines in parasitemia after treatment. Despite this, in vivo mechanisms underlying this rapid decline remain poorly characterised. The overall decline in parasitemia is the net effect of drug inhibition of parasites and host clearance, which competes against any ongoing parasite proliferation. Separating these mechanisms in vivo was not possible through measurements of total parasitemia alone. Therefore, we employed an adoptive transfer approach in which C57BL/6J mice were transfused with *Plasmodium berghei* ANKA strain-infected, fluorescent red blood cells, and subsequently drug-treated. This approach allowed us to distinguish between the initial drug-treated generation of parasites (Gen0), and their progeny (Gen1). Artesunate efficiently impaired maturation of Gen0 parasites, such that a sufficiently high dose completely arrested maturation after 6 h of in vivo exposure. In addition, artesunate-affected parasites were cleared from circulation with a half-life of 6.7 h. In vivo cell depletion studies using clodronate liposomes revealed an important role for host phagocytes in the removal of artesunate-affected parasites, particularly ring and trophozoite stages. Finally, we found that a second antimalarial drug, mefloquine, was less effective than artesunate at suppressing parasite maturation and driving host-mediated parasite clearance. Thus, we propose that in vivo artesunate treatment causes rapid decline in parasitemia by arresting parasite maturation and encouraging phagocyte-mediated clearance of parasitised RBCs.

© 2017 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

1. **Introduction**

There were an estimated 214 million cases of malaria in 2015, resulting in 438,000 deaths (World Health Organization (WHO), 2015b). Artesunate (an artemisinin derivative) is the recommended treatment for patients with complicated malaria, and is associated with improved survival among those admitted to hospital with severe malaria (Dondorp et al., 2010; Newton et al., 2013; World Health Organization, 2015a). However, growing parasite resistance to artesunate and its partner drugs has prompted the search for alternative therapies (Dondorp et al., 2009; Phyo et al., 2012; Amaratunga et al., 2016). When assessing antimalarial efficacy in vivo, key metrics include the time to clearance of parasitemia (Jiang et al., 1982); the parasite reduction ratio (White, 1997; Marquart et al., 2015), and more recently the rate of clearance of parasitemia (Flegg et al., 2011; Abdulla et al., 2015). The usefulness of these metrics became most apparent when they affirmed the use of highly effective artemisinins, which were originally found to elicit very rapid elimination of parasitemia in patients compared with other antimalarial drugs (Jiang et al., 1982; White, 1994; Hien et al., 1996). More recently, the detection of slower declines in parasitemia after treatment with artesinins played a critical role in the early detection of artemisinin resistance (Dondorp et al., 2009; Phyo et al., 2012).

Despite the well-established utility of these measures for assessing drug efficacy, the underlying mechanisms driving a decline in parasitemia after treatment are not well understood. Here, we hypothesise that a reduction in parasite numbers after
treatment involves at least two major concurrent processes (Dogoński et al., 2015; Hastings et al., 2015): firstly, an impairment of parasite development that hinders further proliferation (Wilson et al., 2013), and secondly, host-mediated clearance of drug-affected parasites from circulation, most likely by phagocytic cells in the spleen (Chotivanich et al., 2002). Thus far, it has not been possible to separate and measure these two processes, either clinically or otherwise, in vivo.

In this paper, we used a mouse model of infection and an adoptive transfer approach to make quantitative assessments of parasite maturation and host clearance during the first 24 h after treatment with antimalarial drugs. This approach allowed us to study a single generation of infected parasites and separate the process of host clearance from parasite maturation and proliferation. We found that the normal progression of parasite maturation was rapidly arrested after treatment, suppressing further parasite proliferation over the first 24 h. We also measured the clearance rate of drug-affected early-stage and late-stage parasites from circulation, and showed that clearance of drug-affected early-stage parasites is largely mediated by host phagocytic cells. Finally, we also explored the same processes after treatment with an alternative antimalarial drug, mefloquine (MQ). Thus, our combined experimental and analytical methodology in mouse models of malaria has permitted greater insight into the in vivo effects of antimalarial drugs on parasite replication and subsequent host clearance.

2. Materials and methods

2.1. Mice and ethics

Female C57BL/6j mice aged 6–12 weeks were purchased from the Animal Resource Centre (Canning Vale, Perth, WA, Australia) and maintained under conventional conditions. This study was carried out in strict accordance with guidelines from The National Health and Medical Research Council of Australia (NH&MRC), as detailed in the document Australian Code of Practice for the Care and Use of Animals for Scientific Purposes, 7th edition, 2004. All animal procedures and protocols were approved (A02-633M) and monitored by the QIMR Berghofer Medical Research Institute Animal Ethics Committee, Australia.

2.2. Parasites and infections

Plasmodium berghei ANKA (PbA) and *Plasmodium yoelii* XNL (PyXNL) strains were used in all experiments after a single in vivo passage in wild type C57BL/6j mice (Animal Resource Centre). Transgenic PbA-GFP strains were maintained as previously reported (Haque et al., 2011b). All donor mice were infected with either 10^2 (PbA) or 10^2 (PyXNL) infected red blood cells (RBCs) i.v. via the lateral tail vein.

2.3. Adoptive transfer of donor RBCs

The adoptive transfer of donor parasites was carried out as previously described (Khoury et al., 2015). Donor parasitised RBCs (pRBCs) were collected from mice infected with PbA or PyXNL by cardiac punctures. Heparinised blood was washed twice in Ca$^{2+}$/Mg$^{2+}$-free PBS (PBS-A), and stained in CellTrace™ Far Red DDAO-SE (Life Technologies, USA) according to manufacturer’s instructions. Briefly, 50 μg of CellTrace™ were dissolved for 10 min in 25 μl of DMSO. This was added to 5 ml of resuspended blood in PBS-A. Blood was stained in the dark, at room temperature with constant rolling for 15 min, and then washed twice in 10× volumes of PBS-A. Successful labelling of RBCs was confirmed by flow cytometry using an LSR II Fortessa analyzer (BD Biosciences, Australia) and FlowJo software (Treestar, CA, USA). CellTrace™-labelled blood was resuspended in 2 ml volumes per donor mouse, and injected in 200 μl volumes via i.v. injection using a 26 G needle.

2.4. Drug preparation

Sodium artesunate (Guilin Pharmaceutical Co., Ltd., Guilin, Guangxi, China) was prepared according to the manufacturer’s instructions, diluted in 0.9% saline (Baxter, Australia), and administered to mice immediately after donor parasites were transfused, and for some mice, a second time 12 h later. Doses ranged from 10 μg to 1000 μg (corresponding to 0.5 mg/kg to 50 mg/kg) and were administered in 200 μl volumes via i.p. injection.

Mefloquine hydrochloride (Lariam®) (Roche, Basel, Switzerland) was dissolved to a stock concentration of 25 mg/ml in ultrapure water (Milli-Q®, Millipore) containing 10% v/v DMSO (Sigma, USA) for 30 min at room temperature with constant agitation. This was further diluted just before administration to mice at doses indicated above, and given via i.p. injection in 200 μl volumes.

2.5. Phagocyte depletion in vivo

Host phagocytes were depleted in vivo with a single i.v. injection (via a lateral tail vein using 26 G needles) of 200 μl of clodronate-containing liposomes (www.clodronateliposomes.com) 3 days prior to transfusion of labelled blood and antimalarial drug treatment.

2.6. In vitro culturing of peripheral blood

Peripheral blood was collected and diluted 1:40 in culture medium (Roswell Park Memorial Institute medium (RPMI), 20% FBS, 1 U/ml of heparin sodium). A 200 μl volume of diluted blood was plated per well in 96-well flat bottom plates (Corning, USA). Plates were covered, then flushed for 30 s with 5% CO$_2$, 5% O$_2$, 90% N$_2$ in a closed secondary container which was then sealed. Cultures were incubated at 37 °C for the specified times. Cells were then resuspended by gentle pipetting immediately before staining for flow cytometric analysis. Separate cultures were maintained for each ex vivo time point.

2.7. Flow cytometric analysis of blood

Forward scatter (FSC) and side scatter (SSC) were used to distinguish RBCs from other cell types. Plotting the FSC-Area (FSC-A) and the FSC–Height (FSC–H) allowed the exclusion of doublets (events recorded by the flow cytometer that are the result of two cells being detected simultaneously). For imaging flow cytometry, the aspect ratio and area of channel 1 (bright field; BF) were used to distinguish RBCs from other cell types and exclude doublets. Focused events were then selected by plotting of the gradient RMS feature of channel 1 (first camera; BF) and the gradient RMS feature of channel 9 (second camera; BF). A flow cytometric method, adapted from various research groups (Apte et al., 2011; Klonis et al., 2011; Malleret et al., 2011), was employed to simultaneously detect adoptively transferred (CellTrace™-labelled) RBCs, to distinguish DDAO-SE586 (donor) from DDAO-SE586 (recipient) RBCs, and to determine the developmental stage of pRBCs (Supplementary Figs. S1, S2). Briefly, a single drop of blood from a tail bleed was diluted and mixed in 200 μl of RPMI medium containing 5 U/ml of heparin sulphate. Diluted blood was simultaneously stained for 30 min in the dark at room temperature with an antimouse erythroid cell antigen TER119-APC antibody (2 μg/ml; BioLegend, USA), cell-permeant RNA/DNA stain, Syto84 (5 μM; Life Technologies) and with DNA stain, Hoechst 33342 (10 μg/ml;
recently developed method in which fluorescently-labelled donor for this antimalarial drug. This method is highly effective at reducing circulating pRBC numbers in mice, resulting in reduced clinical symptoms (Fig. 1A). These data confirmed that artesunate in parasitemia associated with complete protection from fatal neurological symptoms due to treatment. Contrary to our initial expectations, mice treated with artesunate in order to measure the increase in parasite clearance due to treatment.

To begin dissecting in vivo mechanisms of action for artesunate, we first determined whether this drug was indeed effective in mice infected with P. yoelii. Artesunate treatment was initiated at day 5 p.i., when mice start to exhibit symptoms of severe disease including liver damage (Haque et al., 2011a), which led to a rapid decline in parasitemia associated with complete protection from fatal neurological symptoms (Fig. 1A). These data confirmed that artesunate is highly effective at reducing circulating pRBC numbers in mice, thus permitting further studies of in vivo mechanisms of action for this antimalarial drug.

In order to dissect in vivo mechanisms of action, we utilised our recently developed method in which fluorescently-labelled donor pRBCs are infused and tracked in vivo (Khoury et al., 2015). This approach differentiates between one generation of parasites and their progeny, i.e. the donor pRBCs that we transfused into the recipient mice, which we term Gen0 (Fig. 1B, C), from the progeny of these transfused parasites in unlabelled (i.e. recipient) RBCs, which we term Gen1 (Fig. 1B, C). We transfused mice with labelled, Gen0 pRBCs and immediately treated with artesunate or control saline (Fig. 2A). In control-treated mice we observed that Gen0 pRBCs, as expected, disappeared from circulation over 24 h, most likely due to a combination of sequestration, rupture, and clearance by the host (Deharo et al., 1996; Khoury et al., 2015), with 41.5% ± 0.9 of the initial concentration of donor pRBCs remaining at 11 h, and 6.4% ± 0.7 remaining after 24 h.

We then analysed the removal of Gen0 pRBCs after treatment with artesunate in order to measure the increase in parasite clearance due to treatment. Contrary to our initial expectations, mice treated with artesunate showed a dose-dependent increase in the number of Gen0 pRBCs remaining in circulation compared with control-treated mice (Fig. 2B, C). In mice given 100 μg (5 mg/kg) of artesunate at 0 h and 11 h, almost twice as many Gen0 pRBCs remained in circulation at 11 h (73% ± 3, P < 0.0001, respectively); by 24 h, nearly three times as many parasites remained in circulation (17.6% ± 2.6, P < 0.01) (Fig. 2C). Since both tissue sequestration and schizont rupture likely contribute to the loss of pRBCs from circulation in untreated mice, our data suggested that artesunate slowed the exit of Gen0 pRBCs from circulation by hindering or halting parasite maturation.

Next we repeated the above experiment with a second rodent-infective species, P. yoelii 17XNL strain. Once again, artesunate treatment of P. yoelii-infected mice led to a dose-dependent increase in the number of Gen0 pRBCs remaining in circulation (Fig. 2D), indicating that our observations were not limited to PbA infection. We also repeated these experiments with fivefold higher doses of artesunate (Fig. 2D). This led to further increases in the persistence of Gen0 parasites (Fig. 2D), which strongly suggested that the phenomenon of drug-induced persistence in circulation was not an artefact of sub-optimal drug dosing.

3. Results

3.1. Tracking a single generation of parasites after artesunate treatment in vivo

In order to examine the removal of Gen0 pRBCs after treatment with artesunate, we again determined whether this drug was indeed effective in mice infected with P. yoelii. Artesunate treatment was initiated at day 5 p.i., when mice start to exhibit symptoms of severe disease including liver damage (Haque et al., 2011a), which led to a rapid decline in parasitemia associated with complete protection from fatal neurological symptoms (Fig. 1A). These data confirmed that artesunate is highly effective at reducing circulating pRBC numbers in mice, thus permitting further studies of in vivo mechanisms of action for this antimalarial drug.

To begin dissecting in vivo mechanisms of action for artesunate, we first determined whether this drug was indeed effective in mice infected with P. yoelii. Artesunate treatment was initiated at day 5 p.i., when mice start to exhibit symptoms of severe disease including liver damage (Haque et al., 2011a), which led to a rapid decline in parasitemia associated with complete protection from fatal neurological symptoms (Fig. 1A). These data confirmed that artesunate is highly effective at reducing circulating pRBC numbers in mice, thus permitting further studies of in vivo mechanisms of action for this antimalarial drug.

In order to dissect in vivo mechanisms of action, we utilised our recently developed method in which fluorescently-labelled donor pRBCs are infused and tracked in vivo (Khoury et al., 2015). This approach differentiates between one generation of parasites and their progeny, i.e. the donor pRBCs that we transfused into the recipient mice, which we term Gen0 (Fig. 1B, C), from the progeny of these transfused parasites in unlabelled (i.e. recipient) RBCs, which we term Gen1 (Fig. 1B, C). We transfused mice with labelled, Gen0 pRBCs and immediately treated with artesunate or control saline (Fig. 2A). In control-treated mice we observed that Gen0 pRBCs, as expected, disappeared from circulation over 24 h, most likely due to a combination of sequestration, rupture, and clearance by the host (Deharo et al., 1996; Khoury et al., 2015), with 41.5% ± 0.9 of the initial concentration of donor pRBCs remaining at 11 h, and 6.4% ± 0.7 remaining after 24 h.

We then analysed the removal of Gen0 pRBCs after treatment with artesunate in order to measure the increase in parasite clearance due to treatment. Contrary to our initial expectations, mice treated with artesunate showed a dose-dependent increase in the number of Gen0 pRBCs remaining in circulation compared with control-treated mice (Fig. 2B, C). In mice given 100 μg (5 mg/kg) of artesunate at 0 h and 11 h, almost twice as many Gen0 pRBCs remained in circulation at 11 h (73% ± 3, P < 0.0001, respectively); by 24 h, nearly three times as many parasites remained in circulation (17.6% ± 2.6, P < 0.01) (Fig. 2C). Since both tissue sequestration and schizont rupture likely contribute to the loss of pRBCs from circulation in untreated mice, our data suggested that artesunate slowed the exit of Gen0 pRBCs from circulation by hindering or halting parasite maturation.

Next we repeated the above experiment with a second rodent-infective species, P. yoelii 17XNL strain. Once again, artesunate treatment of P. yoelii-infected mice led to a dose-dependent increase in the number of Gen0 pRBCs remaining in circulation (Fig. 2D), indicating that our observations were not limited to PbA infection. We also repeated these experiments with fivefold higher doses of artesunate (Fig. 2D). This led to further increases in the persistence of Gen0 parasites (Fig. 2D), which strongly suggested that the phenomenon of drug-induced persistence in circulation was not an artefact of sub-optimal drug dosing.

3.2. In vivo artesunate halts parasite maturation

Given the persistence of Gen0 pRBCs after treatment, we next sought to assess the effect of artesunate on parasite maturation and survival. To do this, we took peripheral blood from mice at 2 h after donor RBC transfusion and artesunate treatment, and cultured these samples in vitro in the absence of drug, with regular flow cytometric assessments of the progression of Gen0 pRBCs through their life stages (Fig. 3A). While Gen0 pRBCs from control-treated mice began to transition to the schizont stage by 6 h of culturing, this only began by 15 h after artesunate exposure (200 μg) (Fig. 3B). By 24 h in culture, 57 ± 2% (n = 2) of Gen0 pRBCs had become schizonts in control-treated mice, versus 11 ± 3% (n = 2) after treatment with 200 μg of artesunate. The delay in transition to the schizont stage suggested that at least some, but perhaps not all, parasites were impaired in their capacity to mature when exposed to 2 h of 200 μg of artesunate treatment in vivo. To determine the effect of longer exposure times and increased dosing, we performed the same experiment after 6 h in vivo exposure to 200 μg or 1000 μg of artesunate compared with saline controls (Fig. 3C). Six hours of exposure to 200 μg of artesunate in vivo led to greater impairment of parasite development, although a small proportion of Gen0 pRBCs still reached the schizont stage by 24 h in culture (22 ± 3%, schizonts at 24 h in culture compared with 11 ± 1% initially, Fig. 3C). After exposure to 1000 μg of artesunate, Gen0 pRBCs showed no discernible progression through their life stages by 24 h in culture. Together, our data suggested that if exposed to a high enough dose of artesunate, all parasites were rapidly and severely impaired in their capacity to mature after 6 h of in vivo exposure in this experimental model.

To confirm in our laboratory the use of established flow cytometric methodology for assessing parasite life cycle stages, we employed a high-throughput imaging cytometry approach (Amnis ImageStream®) in which RBCs passing through a flow cytometer were simultaneously photographed to allow their direct visualisation, thus allowing us to assess the validity of our flow cytometric gating strategy. Imaging cytometry was performed on cultures of parasites that had been recovered from infected mice treated with either saline or artesunate (1000 μg; Supplementary Fig. S1), as well as directly in vivo (without drug treatment) (Supplementary Fig. S2). These experiments confirmed that our flow cytometric gating strategies correctly distinguished between early- and late-stage parasites, since pRBCs staining most strongly for Hoechst 33342 by flow cytometry also showed punctate DNA staining consistent with schizontogenesis having occurred. Imaging cytometry, at the resolution performed in this study, revealed no striking differences between ring-stage parasites from mice treated with either saline or artesunate (Supplementary Fig. S1).
3.3. Estimating the stage-specific clearance rate of treated parasites

Since all measurable parasite maturation was disrupted after 6 h of treatment with 1000 μg of artesunate, we next considered the fate of drug-impaired parasites in vivo. We first noted that very few Gen1 pRBCs were generated in mice throughout the first 24 h after treatment with 1000 μg of artesunate, consistent with the complete suppression of Gen0 pRBCs in vitro (Fig. 3C). This confirmed that a single high dose of artesunate in vivo blocked almost all measurable parasite maturation, rupture and RBC re-invasion by 6 h and up to 24 h after treatment. Importantly, therefore, we reasoned that any loss of pRBCs observed during this window was the direct result of host-mediated clearance of drug-impaired parasites or lysis of drug-affected pRBCs (both of which we refer to as clearance). To measure clearance of these drug-impaired parasites, we fitted the rate of decline of Gen0 pRBCs from 6 h – 24 h in mice treated with 1000 μg of artesunate, and found that drug-impaired parasites were removed with a half-life of 6.7 h (95% Confidence Interval (CI): 6.2 to 7.3 h) (Fig. 4B). Furthermore, we distinguished early-stage (ring and trophozoite) Gen0 pRBCs from late-stage (schizont) Gen0 pRBCs (Fig. 3B), and estimated the clearance rate of each life stage independently. Drug-affected schizonts (half-life: 4.7 (95% CI: 4.2 to 5.3) h) were cleared significantly faster than drug-affected early stages (half-life: 7.0 (95% CI: 6.4 to 7.7) h) (P < 0.0001, Wald test).

Next, we examined the role of host phagocytes in mediating clearance of drug-affected parasites, by depleting these cells with clodronate-containing liposomes. This method for depleting phagocytes is well established (Baer et al., 2007; Couper et al., 2007; Arnold et al., 2010; Ishida et al., 2013; Tavares et al., 2013; Borges da Silva et al., 2015; Imai et al., 2015; Mimche et al., 2015; Fontana et al., 2016; Terkawi et al., 2016). In fact a recent study used clodronate liposomes to reveal a key role for splenic dendritic cells in clearing parasites in mice (Borges da Silva et al., 2015). Hence, we first confirmed successful depletion of phagocytes by flow cytometric assessment of splenic dendritic cells, using cell surface MHC-II and CD11c as established markers (Supplementary Fig. S3). Following clodronate liposome treatment we adoptively transferred and tracked labelled pRBCs. The same fitting of Gen0 pRBC populations in these mice showed that clodronate treatment led to a 59% (95% CI: 48% to 70%) reduction in the clearance rate of drug-impaired parasites (P < 0.0001). In particular, we noted that early-stage parasites were cleared much more slowly in clodronate-treated mice (2.7-fold increase in half-life compared with phagocyte-replete mice, P < 0.0001), while schizonts were cleared only marginally more slowly in clodronate-treated mice (1.4-fold increase in half-life compared with intact mice, P < 0.0001). Together, these results indicate that host phagocytes play an important role in clearing artesunate-affected pRBCs, particularly of younger developmental stages.

3.4. Effects of MQ on P. berghei in vivo

After characterising the impact of artesunate on parasite replication and clearance, we next explored whether these observations were evident with other drugs. We repeated our adoptive transfer
we directly compared in vivo clearance of MQ- or artesunate-treated parasites. It follows that not only did artesunate, even at high doses MQ did not inhibit all measurable parasite development so we could exclude the first possibility. However, unlike artesunate, even at high doses MQ did not inhibit all measurable parasite development. Therefore, even though after MQ treatment Gen0 pRBCs are disappearing due to both options listed above (i.e. (i) rupture and (ii) clearance) they are still disappearing more slowly than after treatment with artesunate (where only option (ii) – clearance – is at play) (half-life 13.0 h versus 7.0 h respectively,\(^{*}\). This confirms that MQ-treated parasites must be cleared significantly more slowly than artesunate-treated parasites. It follows that not only did artesunate impair a greater proportion of Gen0 pRBCs within the first 7 h of treatment, but artesunate-affected pRBCs were also removed from circulation much faster than MQ-affected pRBCs.

4. Discussion

The overall decline in parasitemia after treatment with an antimalarial drug has been used as a critical measure of drug efficacy in vivo (Jiang et al., 1982; Dondorp et al., 2009; Flegg et al., 2011). In this study we dissected and measured the underlying mechanisms of drug-mediated control of parasitemia in vivo. We established that the overall decline in parasitemia is the net effect of treatment compared with controls (Fig. 5A). However, unlike artesunate, even high doses of MQ were unable to completely arrest parasite development so we could exclude the first possibility. As noted above, artesunate inhibits all measurable parasite development so we could exclude the first possibility. However, unlike artesunate, even at high doses MQ did not inhibit all measurable parasite development. Therefore, even though after MQ treatment Gen0 pRBCs are disappearing due to both options listed above (i.e. (i) rupture and (ii) clearance) they are still disappearing more slowly than after treatment with artesunate (where only option (ii) – clearance – is at play) (half-life 13.0 h versus 7.0 h respectively,\(^{*}\). This confirms that MQ-treated parasites must be cleared significantly more slowly than artesunate-treated parasites. It follows that not only did artesunate impair a greater proportion of Gen0 pRBCs within the first 7 h of treatment, but artesunate-affected pRBCs were also removed from circulation much faster than MQ-affected pRBCs.

Fig. 2. Artesunate causes parasitized red blood cells to persist in circulation. (A) The adoptive transfer protocol. Two donor mice (C57BL/6) infected with Plasmodium berghei ANKA strain (PbA) were bled to provide donor pRBCs. The donor blood was pooled together and stained with CellTrace™ TM Far Red DDAO-SE (Life Technologies, USA) before being transfused into four groups of mice (n = 5 each) that received either saline (i.p.), a single dose of either 10 μg or 100 μg of artesunate, or two doses of 100 μg of artesunate (corresponding to 0.5 mg/kg, 5 mg/kg or 2 × 5 mg/kg). Blood samples were collected from these mice at 1, 4, 8, 11, 15, 18.5, 21, 24 and 48 h after transfusion for flow-cytometry analysis. (B) The concentration of transfused parasites (labelled RBCs that contain parasites) as a percentage of total RBCs. Untreated mice (solid blue (black)), and mice treated with 10 μg (red (grey), short dashes), 100 μg (red (grey), long dashes) and 2 × 100 μg (solid red (grey)) of artesunate are shown. (Ca, Cb) The median percentage of transfused parasites remaining at 11 and 24 h after transfusion, respectively, compared with 1 h after transfusion. The centre line indicates the median, the box indicates the 25th and 75th centiles and the bars show the range. We observed a dose-dependent increase in donor PbA pRBCs remaining in circulation after treatment with artesunate. (D) Dose-dependent increase in donor non-lethal Plasmodium yoelii XNL pRBCs remaining in circulation after treatment. Three groups of C57BL/6J mice (n = 5 each) received pRBCs infected with P. yoelii. Mice were immediately treated with saline (no drug group), a single 200 μg dose of artesunate i.p., or a single 1000 μg dose of artesunate. The percentage of donor parasites remaining at 20 h after transfusion was higher in the 200 μg group compared with the control (P < 0.05, using a post hoc contrast analysis), and higher in the 1000 μg group compared with the 200 μg group (P < 0.05, using a post hoc contrast analysis). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

3.5. MQ-impaired parasites are not removed by the host as rapidly as artesunate-impaired parasites

Finally, we directly compared in vivo clearance of MQ- or artesunate-treated pRBCs, by analysing the rate of removal of Gen0 pRBC parasites from 6–24 h in mice treated with either 50 mg/kg of artesunate (excluding one mouse in which treatment was ineffective) or 500 mg/kg of MQ (Fig. 6C). In our assay, Gen0 pRBCs are likely to disappear from circulation after treatment for two reasons; (i) they mature and rupture, and (ii) because they are affected by drug and then removed by the host or potentially lyse spontaneously. As noted above, artesunate inhibits all measurable parasite development so we could exclude the first possibility. However, unlike artesunate, even at high doses MQ did not inhibit all measurable parasite development. Therefore, even though after MQ treatment Gen0 pRBCs are disappearing due to both options listed above (i.e. (i) rupture and (ii) clearance) they are still disappearing more slowly than after treatment with artesunate (where only option (ii) – clearance – is at play) (half-life 13.0 h versus 9.1 h respectively, P < 0.001, Wald test). This confirms that MQ-treated parasites must be cleared significantly more slowly than artesunate-treated parasites. It follows that not only did artesunate impair a greater proportion of Gen0 pRBCs within the first 7 h of treatment, but artesunate-affected pRBCs were also removed from circulation much faster than MQ-affected pRBCs.
of at least three processes: the efficacy of drug-action to inhibit parasite development (Fig. 3), any ongoing replication of parasites (Fig. 5B), and the rate of removal of drug-affected parasites by the host (Fig. 4). Our assays also provide a possible means for preclinical dissection of these mechanisms for any candidate antimalarial treatment.

We observed that high doses of artesunate were able to fully suppress parasite development in the first 24 h after treatment, even when cells were removed from mice at 6 h and cultured in vitro in the absence of drug. Moreover, these drug-affected parasites were subsequently cleared from circulation with a half-life of 6.7 h. However, it did not appear that all parasites were ‘killed’ by a single high dose of artesunate, since parasite replication was again evident in treated mice beyond the 24 h period of observation (Fig. 4B). We were not able to characterise the status and proportion of parasites that contributed to further replication (Supplementary Fig. S1). It is possible that a proportion of parasites was completely unaffected by treatment, or that a proportion of parasites survived but was in some way impaired by therapy. Later replication appeared to occur at a normal rate, consistent with no lasting effects of artesunate on at least some parasites. These data appear consistent with other observations in vitro and in vivo,
where artesunate monotherapy exhibited high rates of recrudescence, and raises the idea that at least a subpopulation of parasites remains viable (although perhaps impaired) and capable of replication even after a single high dose of artesunate (Giao et al., 2001; Borrmann et al., 2003; Teuscher et al., 2010). This may be through mechanisms such as dormancy or slower maturation (Teuscher...
parasite clearance rate in clinical studies (Jiang et al., 1982). How-
be expected from its slower onset of action and slower observed
maturation and infection over the first 24 h of MQ treatment might
provide interesting insights into their clinical effects. The ongoing
clean-up versus parasite control.

cyte depletion may determine the importance of host clearance for
control of infection. Future experiments using longer-term phago-
tion over the first 24 h after MQ treatment, and treated Gen parasites
remained more slowly than with artesunate. These differences are consistent with the known ability of artesunate to
rapidly reduce parasitemia in patients compared with other antimi-
arial drugs (Jiang et al., 1982), and its clinical effectiveness
(Dondorp et al., 2005, 2010; Khoury et al., 2016).

The rapid onset of action of artesunate to halt parasite matura-
tion is followed by rapid clearance of affected cells. By contrast, we observed both ongoing parasite maturation and parasite replica-
tion over the first 24 h after MQ treatment, and treated Gen parasites
were removed more slowly than with artesunate. These differences are consistent with the known ability of artesunate to
rapidly reduce parasitemia in patients compared with other anti-
malarial drugs (Jiang et al., 1982), and its clinical effectiveness
(Dondorp et al., 2005, 2010; Khoury et al., 2016).

The arrest of parasite maturation after artesunate treatment allowed us to examine in isolation the process of host clearance of different parasite life stages. Previous ex vivo spleen perfusion studies suggested that the spleen removes schizonts more effec-
tively that younger forms, with an approximately 50% shorter half-life than rings (Safeukui et al., 2008). This was comparable to our in vivo estimates in which we observed a 33% shorter clear-
ance half-life for schizonts compared with early-stage parasites. Interestingly, it appeared that phagocytic cells played a critical role in the removal of drug-affected young-stage parasites, and a less prominent role in the removal of schizonts. This is consistent with the view that artesunate-affected ring-stage parasites are usually removed actively from circulation via ‘pitting’ (Chotivanich et al., 2000, 2002; Buffet et al., 2006), a mechanism in which the affected parasite is removed from with the RBC and the cell is returned to circulation. This process is likely to involve phagocytic cells (Buffet et al., 2006). A similar mechanism is not believed to operate for mature schizonts. Further, the reduced deformability of schizonts may cause these parasites to be retained in the spleen via more mechanical means (Herrick et al., 2012). A limitation in our approach is that clodronate liposome is a broadly acting agent, depleting many phagocytic cells including macrophages, dendritic cells, and granulocytes (Couper et al., 2007; Terkawi et al., 2016). In this study we have not explored the relative roles of each of these cell types in the reduced clearance of parasites, nor have we quanti-
fied the extent of the depletion of each cell type, with the excep-
tion of dendritic cells (Supplementary Fig. S3). Identifying the relative contribution of various cell types in clearing artesunate-affected pRBCs will require further immunological interventions.

Our observations raise an interesting question about the impor-
tance of clearance; are parasites removed by the host severely
damaged in some way (i.e. dead, moribund, or damaged to an
extent that proliferation could not occur even if they were not removed from circulation)? Or does the host remove many poten-
tially viable parasites also? In the former case, the host removal of moribund parasites would represent a “clean-up” function, less
related to controlling pathogen numbers. In the latter case, clear-
ance of potentially viable parasites would remain critical for host
control of infection. Future experiments using longer-term phago-
cyte depletion may determine the importance of host clearance for
clean-up versus parasite control.

The differences between the actions of artesunate and MQ also
provide interesting insights into their clinical effects. The ongoing
maturation and infection over the first 24 h of MQ treatment might
be expected from its slower onset of action and slower observed
parasite clearance rate in clinical studies (Jiang et al., 1982). How-
ever, even when a single generation of treated parasites was con-
sidered, it was unexpected that drug-affected parasites would be
removed at such different rates for the two drugs. This raises the
concept that different drugs may influence the subsequent rates of
host removal of pRBCs. Thus, for example, if artesunate treat-
ment leads to more free radical damage, then ‘dead’ (or incapaci-
tated) parasites may be removed more quickly than cells affected
by MQ.

In severe infection, the rate at which parasites become incapac-
itated is likely a crucial parameter of drug efficacy, minimising both sequestration and rupture. By contrast, the subsequent rate at which incapacitated cells are removed may be less important. In comparing MQ and artesunate, rapid incapacity and rapid clear-
ance appear associated, but it is not clear that this need be the case
for all drugs. Hence, separate measures of the rate of onset of drug
action (the ‘lag phase’ (Flegg et al., 2011; Khoury et al., 2016)) and
subsequent clearance of parasites may be helpful in evaluating new drug regimes.

Our adoptive transfer system provides a powerful tool for dis-
secting host-parasite interactions in vivo. However, it is important
to note that there may be a number of differences in host and par-
asite physiology that may alter the effects of treatment. One nota-
able example is the rate of ‘clearance’ of total parasitemia in our
artesunate-treated mice, which was slower than that typically
reported in humans (Abdulla et al., 2015). Notably, this clearance rate seemed similar to that observed in Plasmodium falciparum
infection in humanised mice (Jiménez-Díaz et al., 2014), suggesting
that it may be a host-specific effect. Hence some caution is
required in the interpretation of our study in relation to human
infections. However, despite this known limitation of the murine
model, mice have provided a useful preclinical tool for assessing
drug efficacy both historically and in recent times (Chawira et al.,
1987; Rottmann et al., 2010; Jiménez-Díaz et al., 2014). Further,
others have demonstrated that rate of decline in parasitemia after
treatment with an array of drugs (although consistently slower in
mice), is strongly correlated with the rate of decline of parasitemia
in humans after treatment with those same antimalarial drugs
(Jiménez-Díaz et al., 2013). As the first known direct in vivo dissec-
tion of the mechanisms of action for antimalarial drugs, we believe
this study provides a useful framework for understanding drug
action, which could be used in the future to examine other
in vivo factors that might influence parasite control including
pre-existing immunity (Looareesuwan et al., 1993).

Acknowledgements

This work was supported by the Australian Research Council
(grant DP120100064), the National Health and Medical Research
Council (NH&MRC), Australia (grants 1082022 (to MPD, DC, AH),
1080001 (to MPD), 1028634 (to AH) and 1028641 (to AH)), and
the Australian Centre for Immunotherapy and Vaccine Develop-
ment. The Australian Federal Government provided Australian
Postgraduate Awards to DSK and KRJ, and the University of
Queensland, Australia, provided International Postgraduate
Research Scholarships to IS and JA, and a UQ Advantage Grant to
IS. MSFS and SEB were supported by Australian NH&MRC Project
Grants 613702 and 1028641. The authors do not have commercial
or other associations that might pose a conflict of interest.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.ijpara.2017.05.
009.

